муниципальное казённое общеобразовательное учреждение «Голубоченская средняя школа № 20»

Рассмотрена и согласована методическим объединением Протокол № 1

от «29» августа 2019 г

Руководитель МО____/М. М. Саитханова/

Принята на педагогическом совете Протокол № 1 от «29» августа 2019 г

УТВЕРЖДАЮ: Директор МКОУ «Голубоченская СШ №20»

А. Н. Перевизенцев Приказ №46/2 от «30» августа 2019 г

РАБОЧАЯ ПРОГРАММА

по алгебре

для **7 - 9** классов

основного общего образования

общеобразовательный уровень

Учитель: Давыдкина Марина Александровна, квалификационная категория-СЗД Фатьянова Ольга Николаевна, квалификационная категория - первая

Пояснительная записка.

Данная рабочая программа является приложением к основной образовательной программе и составлена на основе следующих нормативных документов:

- 1. Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- 2. Примерная основная образовательная программа основного общего образования (одобрена решением федерального учебно-методического объединения по общему образованию, протокол от 08 апреля 2015 года № 1/15);
- 3. Приказ Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897 "Об утверждении федерального государственного образовательного стандарта основного общего образования" (зарегистрирован Минюстом России 1 февраля 2011 г. регистрационный № 19644);
- 4. Приказ Минпросвещения России от 28 декабря 2018 г. № 345 «О федеральном перечне учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования».
- 5. Постановление Главного государственного санитарного врача РФ от 29 декабря 2010 года № 189 «Об утверждении СанПиН 2.4.2.282110 «Санитарноэпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях»;
- 6. Приказ Минобрнауки России № 1577 от 31.12.2015 г. «О внесении изменений в федеральный государственный образовательный стандарт основного общего образования, утверждённый приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 года № 1897»;
- 7. Письма Минобрнауки России № 08-1786 от 28.10.2015 г. «О рабочих программах учебных предметов»;
- 8. Письма Министерства образования Тульской области № 16-01-15/10880 от 30.10.2015 г. «О рабочих программах учебных предметов»;
- 9. Письма Министерства образования Тульской области № 16-01-15/11587 от 17.11.2015 г. «О рабочих программах учебных предметов»;
- 10.Устав МКОУ «Голубоченская СШ № 20»;
- 11. Учебный план на текущий учебный год.
- 12. Алгебра. Рабочие программы. Предметная линия учебников Ю.Н. Макарычева и других. 7-9 классы: пособие для общеобразовательных организаций / Н.Г. Миндюк.-4-е изд. М.: Просвещение, 2018.

ОБЩАЯ ХАРАКТЕРИСТИКА ПРЕДМЕТА.

В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса. Содержание линии «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения

пользоваться алгоритмами, а также приобретению практических навыков, необходимых в овседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе.

Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предметов и окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей процессов и явлений реального мира.

Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений также являются задачами изучения алгебры.

Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования. Обучение математике в основной школе направлено на достижение следующих **целей** изучения:

В направлении личностного развития:

- Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
- Формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
- Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
- Формирования качеств мышления, необходимых для адаптации в современном информационном обществе;
- Развитие интереса к математическому творчеству и математических способностей.

В метапредметном направлении:

- Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
- Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
- Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

В предметном направлении:

- Овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
- Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Задачи:

- приобретение математических знаний и умений;
- овладение обобщенными способами мыслительной, творческой деятельности;
- развитие логического мышления учащихся.
- освоение компетенций (учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, информационно-технологической, ценностно-смысловой).

Место учебного предмета в учебном плане

Базисный учебный (образовательный) план на изучение алгебры в 7—9 классах основной школы отводит 3 часа в неделю с продолжительностью 45 минут каждое в течение каждого года обучения, всего 306 часов. В рабочей программе для 7-9 классов предусмотрено для 7,8 классов 105 часов в год, для 9 класса 102 часа согласно учебному плану школы.

В процессе прохождения материала осуществляется промежуточный контроль знаний и умений в виде самостоятельных работ, тестовых заданий, творческих работ; по программе предусмотрены тематические контрольные работы, в конце учебного года –итоговая контрольная работа, письменный экзамен в 7-8 классах.

Для реализации данной программы используются учебники, включённые в Перечень учебников, рекомендованных для использования в образовательных учреждениях $P\Phi$ на 2019-2020 гг. и соответствующих требованиям $\Phi\Gamma OC$:

- •Алгебра 7 класс: учеб. для общеобразовательных организаций с приложением на электронном носителе / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешкова, С. Б. Суворова]; под ред. С. А. Теляковского. -3-e изд. М.: Просвещение, 2014.
- •Алгебра 8 класс: учеб. для общеобразоват. учреждений /[Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С.Б. Суворова]; под ред. С. А. Теляковского. 18 е изд.- М.: Просвещение, 2014
- •Алгебра 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешкова, С. Б. Суворова]; под ред. С. А. Теляковского. -18-е изд. М.: Просвещение, 2014

Методы и формы обучения.

Методы обучения:

- I.Методы организации и осуществления учебно-познавательной деятельности учащихся:
 - 1. Методы словесной передачи информации и слухового её восприятия:
 - рассказ;
 - доклад учителя.
 - 2. Методы наглядной передачи информации и зрительного её восприятия:
 - использование компьютерных технологий;
 - иллюстрация;
 - экспериментальная задача.
 - 3. Методы передачи информации с помощью практической деятельности:
 - работа с тетрадью;
 - анализ чертежей, заданий.
- II. Методы стимулирования и мотивации.
 - 1. Эмоциональные:
 - поощрения;
 - создание ситуации успеха.
 - 2. Познавательные:
 - создание проблемной ситуации.
 - 3. Волевые:
 - предъявление учебных требований;
 - прогнозирование будущей деятельности.
 - 4. Социальные:
 - создание ситуации взаимопомощи;
 - заинтересованность в результатах своей работы.
- III. Методы контроля и самоконтроля:
 - 1. устные фронтальный опрос;

2. письменные – самостоятельные и контрольные работы.

Формы обучения:

- 1. лекция;
- 2. викторина;
- 3. игра.

ОСНОВНОЕ СОДЕРЖАНИЕ КУРСА

АРИФМЕТИКА

Рациональные числа. Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.

Расширение множества натуральных чисел до множества целых. Множества целых чисел до множества рациональных. Рациональное число как отношение $m \ / \ n$, где $m \ —$ целое число, $n \ —$ натуральное. Степень с целым показателем. Степени числа.

Действительные числа. Квадратный корень из числа. Корень третьей степени. Запись корней с помощью степени с дробным показателем. Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел. Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел.

Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.

Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени десяти в записи числа. Приближённое значение величины, точность приближения. Прикидка и оценка результатов вычислений.

АЛГЕБРА

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество, доказательство тождеств. Тождественные преобразования. Степень с натуральным показателем и её свойства. Преобразования выражений, содержащих степени с натуральным показателем. Одночлены и многочлены. Степень многочлена. Многочлены и действия над ними: сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности, и куб суммы куб разности. Формула разности квадратов, формула суммы кубов и разности кубов. Преобразование целого выражения в многочлен. Разложение многочленов на множители: вынесение общего множителя за скобки, группировка, применение формул сокращённого умножения. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен; разложение квадратного трёхчлена на множители. Выделение полного квадрата в квадратном трехчлене Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Алгебраические дроби и действия над ними: сложение, вычитание, умножение, деление алгебраических дробей. Допустимые значения переменных в дробнорациональных выражениях. Степень с целым показателем и её свойства. Рациональные выражения и их преобразования. Доказательство тождеств. Квадратные корни. Арифметический квадратный корень. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня. Преобразование выражений, содержащих знак модуля.

Уравнения. Понятие уравнения и корня уравнения. Область определения уравнения (область допустимых значений переменной). Уравнение с одной переменной. Корень уравнения. Числовое равенство. Свойства числовых равенств. Равенство с переменной. Равносильность уравнений. Линейное уравнение. Решение линейных уравнений. Квадратное уравнение: формула корней квадратного уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений: использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Решение уравнений, сводящихся к линейным и

квадратным. Решение рациональных уравнений. Примеры решения уравнений третьей и четвёртой степеней. Рациональные корни многочленов с целыми коэффициентами. Решение простейших дробнолинейных уравнений Решение дробно-рациональных уравнений. Методы решения уравнений: методы равносильных преобразований, метод замены переменной, разложения на множители, графический метод. Использование свойств функций при решении уравнений.

Простейшие иррациональные уравнения вида $\sqrt{f(x)} = a$, $\sqrt{f(x)} = \sqrt{g(x)}$. Уравнения вида $x^n = a$ Интерпретация результата, отбор решений. Основная теорема алгебры (без доказательства). Уравнение с несколькими переменными. Уравнение с двумя переменными, решение уравнения с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах. Прямая как графическая интерпретация линейного уравнения с двумя переменными. Уравнения и их системы. Понятие системы уравнений. Решение системы уравнений. Система уравнений с двумя переменными. Равносильность систем уравнений. Системы двух линейных уравнений с двумя переменными. Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки. Примеры решения нелинейных систем. Составление уравнений и их систем по условиям задач. Переход от словесной формулировки соотношений между величинами к алгебраической. Решение текстовых задач алгебраическим способом. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром. Системы линейных уравнений с параметром. Квадратные уравнения с параметром

Неравенства. Числовые неравенства и их свойства. Проверка справедливости неравенств при заданных значениях переменных. Неравенство с одной переменной. Решение неравенства. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной). Равносильность неравенств. Линейные неравенства с одной переменной. Решение линейных неравенств. Квадратные неравенства и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства. Примеры решения дробно-линейных неравенств. Решение целых и дробно-рациональных неравенств методом интервалов. Доказательство числовых и алгебраических неравенств. Системы неравенств с одной переменной. Неравенства и их системы. Равносильность систем неравенств. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств. Составление неравенств и их систем по условиям задач. Графическая интерпретация неравенств с двумя неизвестными и их систем.

ФУНКЦИИ

Основные понятия. Зависимости между величинами. Понятие функции. Способы задания функций: аналитический, графический, табличный. График функции Чтение и построение графиков функций. Область определения и множество значений функции. Свойства функций, их отображение на графике. Примеры числовых функций, получаемых в процессе исследования различных реальных процессов: колебание, показательный рост и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, чётность/нечётность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по её графику. Представление об асимптотах. Непрерывность функции. Кусочно - заданные функции.

Числовые функции. Элементарные функции: линейная, квадратичная, многочлен, дробно-линейная, степенная. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от её углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.

Квадратичная функция, её график(парабола) и свойства. Координаты вершины параболы, ось

симметрии. Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности. Свойства функции $y = \frac{k}{r}$. Гипербола. Степенные функции с натуральными показателями, их графики и свойства.

Преобразование графика функции y = f(x) для построения графиков функций вида y = af(kx + b) + c. Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.

Графики функций $y = a + \frac{k}{x+b}$, $y = \sqrt{x}$, $y = \sqrt[3]{x}$, y = |x|. Использование свойств функций при решении текстовых, физических и геометрических задач.

Изображение чисел очками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.

Декартовы координаты на плоскости; координаты точки. Формирование представлений о метапредметном понятии «координаты» Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке.

Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем.

Числовые последовательности. Понятие числовой последовательности. Числовые последовательности. Примеры числовых последовательностей. Бесконечные последовательности. Задание последовательности рекуррентной формулой и формулой п-го члена. Арифметическая и геометрическая прогрессии. Формулы п-го члена арифметической и геометрической прогрессий, суммы п первых членов. Сумма бесконечно убывающей геометрической прогрессии. Сходящаяся геометрическая прогрессия. Понятие о методе математической индукции. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

Решение текстовых задач

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи. Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объёмов выполняемых работ при совместной работе. Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач. Решение логических задач. Решение логических задач с помощью графов, таблиц. Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).

ВЕРОЯТНОСТЬ И СТАТИСТИКА

Описательная статистика. Представление данных, их числовые характеристики. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Интерпретация статистических данных и их характеристик. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Случайные события и вероятность. Случайный выбор, выборочные исследования. Вычисление вероятностей. Испытания Бернулли. Случайные величины и их характеристики. Частота и вероятность. Закон больших чисел. Оценка вероятностей наступления событий в простейших практических ситуациях. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Независимые события. Умножение вероятностей. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.

Комбинаторика. Перебор вариантов и элементы комбинаторики. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Элементы логики. Понятие о равносильности, следовании, употребление логических связок *если* ..., то ..., в том и только в том случае, логические связки и, или.

МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Аль-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырёх. Н. Тарталья, Дж. Кардано, Н. Х. Абель, Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

- 1) сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
- 2) сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- 3) сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- 4) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- 5) представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
- 6) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- 7) креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;
- 8) умение контролировать процесс и результат учебной математической деятельности;
- 9) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

метапредметные:

- 1) умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- 2) умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;
- 3) умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

- 4) осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родо-видовых связей;
- 5) умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
- 6) умение создавать, применять и преобразовывать знаковосимволические средства, модели и схемы для решения учебных и познавательных задач;
- 7) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
- 8) сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
- _9) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- 10) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- 11) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- 12) умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
- 13) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- 14) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- 15) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- 16) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- 17) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

предметные:

- 1) умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
- 2) владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- 3) умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
- 4) умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;
- 5) умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;
- 6) овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
- 7) овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;

8) умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА АЛГЕБРЫ В 7—9 КЛАССАХ

РАЦИОНАЛЬНЫЕ ЧИСЛА

Выпускник научится:

- 1) понимать особенности десятичной системы счисления;
- 2) владеть понятиями, связанными с делимостью натуральных чисел;
- 3) выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
- 4) сравнивать и упорядочивать рациональные числа;
- 5) выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
- 6) использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

- 7) познакомиться с позиционными системами счисления с основаниями, отличными от 10;
- 8) углубить и развить представления о натуральных числах и свойствах делимости;
- 9) научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

Выпускник научится:

- 1) использовать начальные представления о множестве действительных чисел;
- 2) владеть понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

- 3) развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;
- 4) развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

ИЗМЕРЕНИЯ, ПРИБЛИЖЕНИЯ, ОЦЕНКИ

Выпускник научится:

1) использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

- 2) понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
- 3) понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ

Выпускник научится:

- 1) владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
- 2) выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
- 3) выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
- 4) выполнять разложение многочленов на множители.

Выпускник получит возможность:

5) научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

6) применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

УРАВНЕНИЯ

Выпускник научится:

- 1) решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
- 2) понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- 3) применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

- 4) овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
- 5) применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

HEPABEHCTBA

Выпускник научится:

- 1) понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
- 2) решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
- 3) применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

- 4) разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
- 5) применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

ОСНОВНЫЕ ПОНЯТИЯ. ЧИСЛОВЫЕ ФУНКЦИИ

Выпускник научится:

- 1) понимать и использовать функциональные понятия и язык (термины, символические обозначения);
- 2) строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
- 3) понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

- 4) проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочнозаданные, с «выколотыми» точками и т. п.);
- 5) использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

Выпускник научится:

- 1) понимать и использовать язык последовательностей (термины, символические обозначения);
- 2) применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

- 3) решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;
- 4) понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую с экспоненциальным ростом.

ОПИСАТЕЛЬНАЯ СТАТИСТИКА

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

СЛУЧАЙНЫЕ СОБЫТИЯ И ВЕРОЯТНОСТЬ

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

КОМБИНАТОРИКА

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций. Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.